Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis
نویسنده
چکیده
Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN) proteins (TSN1 and TSN2) are localized in cytoplasmic messenger ribonucleoprotein (mRNP) complexes called stress granules (SG) and processing bodies (PB) under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011) [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler) and TSN double knock-out (tsn1tsn2) seedlings grown under heat stress (39 °C for 40 min) and control (23 °C) conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522) published by Gutierrez-Beltran et al. (2015) in The Plant Cell [2].
منابع مشابه
Transcriptome-wide analysis of uncapped mRNAs in Arabidopsis reveals regulation of mRNA degradation.
The composition of the transcriptome is determined by a balance between mRNA synthesis and degradation. An important route for mRNA degradation produces uncapped mRNAs, and this decay process can be initiated by decapping enzymes, endonucleases, and small RNAs. Although uncapped mRNAs are an important intermediate for mRNA decay, their identity and abundance have never been studied on a large s...
متن کاملAnalysis of Genome-Wide Changes in the Translatome of Arabidopsis Seedlings Subjected to Heat Stress
Heat stress is one of the most prominent and deleterious environmental threats affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However, the coordination of these processes and their spe...
متن کاملGenome-wide profiling of uncapped mRNA.
Gene transcripts are under extensive posttranscriptional regulation, including the regulation of their stability. A major route for mRNA degradation produces uncapped mRNAs, which can be generated by decapping enzymes, endonucleases, and small RNAs. Profiling uncapped mRNA molecules is important for the understanding of the transcriptome, whose composition is determined by a balance between mRN...
متن کاملChemical Modifications Mark Alternatively Spliced and Uncapped Messenger RNAs in Arabidopsis.
Posttranscriptional chemical modification of RNA bases is a widespread and physiologically relevant regulator of RNA maturation, stability, and function. While modifications are best characterized in short, noncoding RNAs such as tRNAs, growing evidence indicates that mRNAs and long noncoding RNAs (lncRNAs) are likewise modified. Here, we apply our high-throughput annotation of modified ribonuc...
متن کاملGenome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens.
Plant growth and development are constantly influenced by temperature fluctuations. To respond to temperature changes, different levels of gene regulation are modulated in the cell. Alternative splicing (AS) is a widespread mechanism increasing transcriptome complexity and proteome diversity. Although genome-wide studies have revealed complex AS patterns in plants, whether AS impacts the stress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015